
The Aeneas Ecosystem: Formal Verification of
Rust Programs

Aymeric Fromherz (Inria Paris),

With Guillaume Boisseau, Son Ho, Yoann Prak, Jonathan Protzenko

1

An Iterative Development Process

2

• Solves the immediate problem
• But only addresses already identified bugs

What About Critical Software?

3

What About Critical Software?

3

What Can We Do Better?

• More testing/auditing?
• TweetNaCl Vulnerability

5

seb.dbzteam.org

What Can We Do Better?

• More testing/auditing?
• TweetNaCl Vulnerability

• Bug in amd-64-64-24k Curve25519

5

“Partial audits have revealed a bug in this software (r1 += 0 + carry
should be r2 += 0 + carry in amd-64-64-24k) that would not be caught
by random tests”
 – D.J. Bernstein, W.Janssen, T.Lange, and P.Schwabe

What Can We Do Better?

• More testing/auditing?
• TweetNaCl Vulnerability

• Bug in amd-64-64-24k Curve25519

• How to understand threats considered, and react to emerging
threats?

• Critical software needs strong, formal guarantees of its correctness
and security

5

Formal Verification to the Rescue

• Formal verification can provide mathematical guarantees about
program behaviours

• Considers all execution paths

• Several successes over the past decade
• CompCert C compiler

• seL4 micro-kernel

• Astrée static analyzer

• Many efforts for cryptographic implementations

8

HACL*: A Verified Cryptographic Library

• Joint development between Inria and Microsoft Research

• Provides guarantees about memory safety, functional correctness,
resistance against side-channels

• Developed using the F* proof assistant

• ~150k lines of F* code compiling to ~100k lines of C (and Assembly)
code

• 30+ algorithms (hashes, authenticated encryption, elliptic curves, …)

• Integrated in Linux, Firefox, Tezos, Python, and many more

9

The F* Ecosystem

10

Proof Frameworks

● Vale: Verification of assembly code

● Low*: Verification of C code

● Steel: Verification of concurrent, low-
level systems

Secure Applications

● HACL*: Verified Crypto library
○ Integrated in Mozilla, Python, Linux, …

● EverParse: Verified Binary Parsers
○ Integrated in Microsoft’s Hyper-V

● StarMalloc: Verified, Concurrent,
Security-Oriented Memory Allocator
○ Usable as drop-in replacement for

Firefox, redis, …

Challenge: Usability

• Reliance on specific, uncommon languages (F*, Coq, …)

• Requires deep expertise in formal methods to be usable

• Researcher-oriented toolchains

• How to democratize the use of formal methods?

• How to better integrate formal methods in development processes?

11

Challenge: Verification Tools Diversity

• Variety of tools for different uses
• Generic proof assistants (F*, Coq, Lean, …)

• Cryptographic protocol verifiers (ProVerif, CryptoVerif, DY*, EasyCrypt, …)

• Specification model checkers (TLA+, …)

• Little interoperation between tools

• Specialized expertise, uncommon to master several tools

• How to support a multitude of tools for diverse usecases?

• How to empower teams with different proof expertises?
12

Challenge: Scalability

• Memory reasoning in C/C++ is tricky
• Aliasing, liveness, memory safety…

• Need complex models or logics
• Dynamic frames, separation logic

• Tedious and time-consuming, limits complexity of studied programs

• Distracts from “core” parts of verification

• How to simplify memory reasoning, and provide custom automation
for different classes of programs?

13

The Aeneas Methodology

Code (Rust)Spec (Rust)

Spec + Code Model

Software Engineer

Proof Engineer

System Architect
Cryptographer

...

Extract Extract

Prove

Correctness Proof

Extract

Proof Engineer

Spec (verif. tool)
EasyCrypt

Prove

Spec Properties
(security, liveness, ...)

TLA+

Rust Overview

• At the forefront of “Safe Coding” development advocated by governments

• Adoption into Windows, Linux, Android, …

• High-level language, with type polymorphism and “typeclasses” (traits)

• Ownership-based type system, ensuring memory safety

 fn swap (x: &mut u8, y: &mut u8)

• Explicit data mutability, allows aliasing for immutable borrows

• Also provides low-level (C-like) idioms through unsafe escape hatch

15

Rust Issues

• Aborted executions at run-time (panic)
• E.g., out-of-bounds memory accesses. Risks of DoS

• Memory vulnerabilities in unsafe code
• Similar to C/C++

• Unsafe code needs to interoperate with safe code

• Design flaws, incorrect implementations, …

Still need formal verification!

16

Translating Rust to Pure Code

• Core idea: Leverage invariants provided by the Rust type system to
simplify verification

• We translate Rust programs to semantically equivalent functional
models

• We can reason about these models in different proof assistants

17

Translating safe Rust to Pure Code

18

fn incr(x : &mut i32) {
 *x = *x + 1;
}

fn main() {
 let mut x = 0;
 incr(&mut x);
 incr(&mut x);
 incr(&mut x);
 assert!(x == 3);
}

let incr (x : i32) : i32 = x + 1

let main () =
 let x = 0 in
 let x = incr x in
 let x = incr x in
 let x = incr x in
 assert (x == 3)

Rust: Translation:

Translating safe Rust to Pure Code: Advantages

19

void main() {
 int x, y = 0;
 incr(&x);
 incr(&y);
}

let main () =
 let x, y = 0 in
 let x = incr x in
 let y = incr y

C: Verification:

Do x and y alias?
If yes, x = 1, y = 1, else x = 1, y = 0

Do x and y alias?
If yes, x = 2, y = 2, else x = 1, y = 1

fn main() {
 let mut x, y = 0;
 incr(&mut x);
 incr(&mut y);
}

Rust:

x and y are different variables, no
memory reasoning required

Translating safe Rust to Pure Code

fn choose<‘a>(
 b : bool, x : &'a mut i32, y : &'a mut i32)
-> &'a mut i32

{
if b { return x; }
else { return y; }

}

let mut x = 0;
let mut y = 1;
let z = choose(true, &mut x, &mut y);

*z = 2; // Update x

// Observe the changes
assert!(x == 2);
assert!(y == 1);
...

let choose (b : bool) (x : i32) (y : i32) : i32 =
if b then x else y

let x = 0 in
let y = 1 in
let z = choose true x y in
...

let x = 0 in
let y = 1 in
let z = choose true x y in

let z = 2 in

... ?

Rust: Translation:

‘a ends here

Translating safe Rust to Pure Code

fn choose<‘a>(
 b : bool, x : &'a mut i32, y : &'a mut i32)
-> &'a mut i32

{
if b { return x; }
else { return y; }

}

let mut x = 0;
let mut y = 1;
let z = choose(true, &mut x, &mut y);

*z = 2; // Update x

// Observe the changes
assert!(x == 2);
assert!(y == 1);
...

let choose (b : bool) (x : i32) (y : i32) : i32 =
if b then x else y

let x = 0 in
let y = 1 in
let z = choose true x y in
...

let x = 0 in
let y = 1 in
let z = choose true x y in

let z = 2 in

... ?

let x = 0 in
let y = 1 in
let z = choose true x y in

let z = 2 in

let (x, y) = ?? in
...

let x = 0 in
let y = 1 in
let z = choose true x y in

let z = 2 in

let (x, y) = (z, y) in
...

let x = 0 in
let y = 1 in
let z = choose true x y in

let z = 2 in

let (x, y) = if true then (z, y) else (x, z) in
...

Rust: Translation:

Translating safe Rust to Pure Code

fn choose<‘a>(
 b : bool, x : &'a mut i32, y : &'a mut i32)
-> &'a mut i32

{
if b { return x; }
else { return y; }

}

let mut x = 0;
let mut y = 1;
let z = choose(true, &mut x, &mut y);

*z = 2; // Update x

// Observe the changes
assert!(x == 2);
assert!(y == 1);
...

let choose (b : bool) (x : i32) (y : i32) : i32 =
if b then x else y

let choose_fwd (b : bool) (x : i32) (y : i32) : i32 =
if b then x else y

let choose_back (b : bool) (x : i32) (y : i32) (z : i32) :
 i32 * i32 =
if b then (z, y) else (x, z)

let x = 0 in
let y = 1 in
let z = choose true x y in
...

let x = 0 in
let y = 1 in
let z = choose true x y in

let z = 2 in

... ?

let x = 0 in
let y = 1 in
let z = choose true x y in

let z = 2 in

let (x, y) = ?? in
...

let x = 0 in
let y = 1 in
let z = choose true x y in

let z = 2 in

let (x, y) = (z, y) in
...

let x = 0 in
let y = 1 in
let z = choose true x y in

let z = 2 in

let (x, y) = if true then (z, y) else (x, z) in
...

let x = 0 in
let y = 1 in
let z = choose_fwd true x y in

let z = 2 in

let (x, y) = choose_back true x y z in
...

Modular translation with forward and backward functions

Rust: Translation:

Types derived from
Rust signature only

Translating Recursion
Rust: Translation:

pub enum List<T> {
Cons(T, Box<List<T>>),
Nil,

}

fn nth<'a, T>(l: &'a mut List<T>, i: u32)
 -> &'a mut T {
match l {
List::Cons(x, tl) => {
if i == 0 {

 return x;
 }
 else {
 return nth(tl, i - 1);
 }
 }

List::Nil => { panic!() }
 }
}

let rec nth_fwd (t : Type) (l : list_t t) (i : u32) : result t =
 begin match l with
 | ListCons x tl ->
 if i = 0
 then Return x
 else begin i0 <-- u32_sub i 1; nth_fwd t tl i0 end
 | ListNil -> Fail Failure
 end

Forward and backward functions behave like lenses

let rec nth_back (t : Type) (l : list_t t) (i : u32) (ret : t) :
 result (list_t t) =
 begin match l with
 | ListCons x tl ->
 if i = 0
 then Return (ListCons ret tl)
 else begin
 i0 <-- u32_sub i 1;
 tl0 <-- nth_back t tl i0 ret;
 Return (ListCons x tl0) end
 | ListNil -> Fail Failure
 end

Translating Loops
Rust:

Translation:

pub enum List<T> {
Cons(T, Box<List<T>>),
Nil,

}

pub fn nth<T>(mut ls: &mut List<T>, mut i: u32)
 -> &mut T {
 loop {
 match ls {
 List::Cons(x, tl) => {
 if i == 0 { return x; }
 else {
 ls = tl;
 i -= 1;
 continue;
 }
 }
 List::Nil => { panic!() }
 }
 }
}

let rec nth_loop_fwd
 (t : Type) (ls : list_t t) (i : u32) : result t =
 begin match ls with
 | ListCons x tl ->
 if i = 0 then Return x
 else begin i0 <-- u32_sub i 1; nth_loop_fwd t tl i0 end
 | ListNil -> Fail Failure
 end

let nth_fwd t ls i = nth_loop_fwd t ls i

Translated functions are similar
to the recursive case

let rec nth_loop_back
 (t : Type) (ls : list_t t) (i : u32) (ret : t) :
 result (list_t t) =
 begin match ls with
 | ListCons x tl ->
 if i = 0 then Return (ListCons ret tl)
 else begin
 i0 <-- u32_sub i 1;
 tl0 <-- nth_loop_back t tl i0 ret;
 Return (ListCons x tl0) end
 | ListNil -> Fail Failure
 end

let nth_back t ls i ret = nth_loop_back t ls i ret

Translation: Key Ingredients

• Translation based on a symbolic execution computing the borrow
graph
• Reimplements a borrow checker for Rust

• Formalized, captures the essence of borrow checking

• Allows to formally study extensions of the Rust type system

• Mechanization in Coq ongoing

25

Reusing Proof Assistant Ecosystems

• Functional models can be extracted to many proof assistants

• Allows reusing existing libraries and verified developments
• Mathlib in Lean

• Verified compilation and semantics in Coq

• SMT automation and side-channel reasoning in F*

• Possible to prove different properties on the same program in
different tools

26

Rust Static Analysis

• Reasoning in proof assistants is time-consuming

• Some properties do not require a high expressiveness of the tools

• Can be checked through static analyses

• Interacting with the Rust compiler is tricky
• Compilation-oriented representations

• Internal details and specific APIs

• Some information needs to be reconstructed

27

Charon: a Rust Analysis Framework

• Charon offers analysis-oriented representations for Rust programs

• Integrates with the Cargo build system, abstracts compiler internals

• Reconstructs analysis-relevant information (trait instantiations, …)

• Simplifies representations (constants, pattern-matching, …)

• Reconstructs control-flow

https://github.com/AeneasVerif/charon

28

Charon Applications

• Common interface for the Rust compiler, entrypoint of most of our
tools

• Prototype of side-channel analysis on top of Charon
• Can detect timing and cache-based side channels in cryptographic code

• Rediscovers the KyberSlash vulnerability in PQC implementations

• Other uses in the broader Rust verification community

29

Interoperating with Legacy Systems

• More and more projects move towards Rust, but many existing
projects still rely on C

• Eurydice can translate a subset of safe Rust to C code
• Type monomorphization

• Trait elimination

• Translation of high-level iterators to for/while loops

• Allows to develop (and verify) code in Rust, and deploy C code when
needed

https://github.com/AeneasVerif/eurydice
30

Porting Legacy Code to Rust

• Several projects (TRACTOR, C2Rust) aim to automatically translate
existing C/C++ code to Rust

• To support all of C, they mostly target unsafe Rust, losing safety
guarantees

• Translations do not necessarily preserve semantics

• Our approach:
• Target a small subset of C, but translate it to safe Rust

• Perform targeted rewritings in existing C code to match our supported subset

31

Handling Pointer Arithmetic
• In applicative C code, pointer arithmetic is mostly used for array

manipulations

 let ab = abcd + 0; // Slice of two elements of abcd
 let dc = abcd + 2; // Slice of two elements of abcd

32

let ab = (&mut tmp1)[0..];
let dc = (&mut tmp1)[2..];

let sp = tmp1.split_at_mut(2usize);
let ab = sp.0;
let dc = sp.1;

Data Mutability

• By default, all data is implicitly mutable in C

 void add(uint8* out, uint8* x, uint8* y) { out[0] = x[0] + y[0] }

 add(out, x, x);

• Mutable data cannot alias in Rust

 fn add(out: &mut u8, x:&mut u8, y: &mut u8) { ... }

 add(out, x, x);

 fn add(out: &u8, x:&u8, y: &u8) { out[0] = x[0] + y[0] }

33

Inferring Mutability

• By default, we translate all pointers to immutable borrows

• We perform a backward analysis to precisely infer mutability

 fn add(out: &u8, x:&u8, y: &u8) { out[0] = x[0] + y[0] }

 fn add(out: &mut u8, x:&u8, y: &u8) { out[0] = x[0] + y[0] }

• Small changes and insertion of copies sometimes needed in source
code to match Rust semantics

34

Scylla: Preliminary Results

• Very experimental. Currently implemented as extractor for highly
structured, verified F* code

• WIP: libclang frontend to parse C files directly

• C subset considered is sufficient for verified cryptography

• We can translate HACL* to 80,000 lines of safe Rust

• Can also translate parts of SymCrypt, bzip2 directly from C

• Not applicable to generic C code, but can help with legacy applicative
C code

https://github.com/AeneasVerif/scylla

35

Conclusion

• While being safer than C/C++, Rust opens new challenges and
avenues for formal verification

• Aeneas proposes to verify safe Rust programs through a translation to
a functional model:
• Eliminates memory reasoning

• Allows the use of different proof assistants (and leverage different expertises)

• An ecosystem of tools around Aeneas helps handling legacy systems,
and developing new analyses

https://aeneas-verif.zulipchat.com/ https://github.com/AeneasVerif

36
aymeric.fromherz@inria.fr

	Slide 1: The Aeneas Ecosystem: Formal Verification of Rust Programs
	Slide 2: An Iterative Development Process
	Slide 3: What About Critical Software?
	Slide 4: What About Critical Software?
	Slide 5: What Can We Do Better?
	Slide 6: What Can We Do Better?
	Slide 7: What Can We Do Better?
	Slide 8: Formal Verification to the Rescue
	Slide 9: HACL*: A Verified Cryptographic Library
	Slide 10: The F* Ecosystem
	Slide 11: Challenge: Usability
	Slide 12: Challenge: Verification Tools Diversity
	Slide 13: Challenge: Scalability
	Slide 14: The Aeneas Methodology
	Slide 15: Rust Overview
	Slide 16: Rust Issues
	Slide 17: Translating Rust to Pure Code
	Slide 18: Translating safe Rust to Pure Code
	Slide 19: Translating safe Rust to Pure Code: Advantages
	Slide 20: Translating safe Rust to Pure Code
	Slide 21: Translating safe Rust to Pure Code
	Slide 22: Translating safe Rust to Pure Code
	Slide 23: Translating Recursion
	Slide 24: Translating Loops
	Slide 25: Translation: Key Ingredients
	Slide 26: Reusing Proof Assistant Ecosystems
	Slide 27: Rust Static Analysis
	Slide 28: Charon: a Rust Analysis Framework
	Slide 29: Charon Applications
	Slide 30: Interoperating with Legacy Systems
	Slide 31: Porting Legacy Code to Rust
	Slide 32: Handling Pointer Arithmetic
	Slide 33: Data Mutability
	Slide 34: Inferring Mutability
	Slide 35: Scylla: Preliminary Results
	Slide 36: Conclusion

