-
R
i

The Aeneas Ecosystem: Formal Verification oi

Rust Programs

Aymeric Fromherz (Inria Paris),

With Guillaume Boisseau, Son Ho, Yoann Prak, Jonathan Protzenko

\/ 1




An lterative Development Process

-
Realmon.exe ﬁ

@Y The application failed to initialize

% properly
‘ Click Close to exit the program.

Error code; 1142

(A) Hide details

|§ Download and install updates for your computer
X 173 impertant updates are 173 important updates
available selected, 483.3 MB
4 opticnal updates are
available

[ Fy Install upclates J

* Solves the immediate problem
* But only addresses already identified bugs



What About Critical Software?

Report: Software Design Errors Caused Ariane 5 Explosion

July 23,1996



What About Critical Software?

This ‘Magical Bug’ Exposed Any iPhone in a Hacker's Wi-Fi Range

A Google researcher found flaws in Apple's AWDL protocol that would have allowed for a complete device takeover.

Hackers Made Tesla Cars
Autonomously Accelerate Up To

Ransomware Attacks Grow, Crippling
Cities and Businesses

Hackers are locking people out of their networks and demanding
big payments to get back in. New data shows just how common
and damaging the attacks have become.



What Can We Do Better?

* More testing/auditing?
* TweetNaCl Vulnerability

This bug is triggered when the last limb n[15] of the input argument n of
this function is greater or equal than @xffff . In these cases the result of
the scalar multiplication is not reduced as expected resulting in a wrong

packed value. This code can be fixed simply by replacing m[15]&=8xTTfT;
by m[14]&=@xffff; .
U seb.dbzteam.org



What Can We Do Better?

* More testing/auditing?

* TweetNaCl Vulnerability
* Bugin amd-64-64-24k Curve25519

“Partial audits have revealed a bug in this software (r1 += 0 + carry
should be r2 += 0 + carry in amd-64-64-24k) that would not be caught
by random tests”

— D.J. Bernstein, W.Janssen, T.Lange, and P.Schwabe



What Can We Do Better?

* More testing/auditing?

* TweetNaCl Vulnerability
* Bugin amd-64-64-24k Curve25519

* How to understand threats considered, and react to emerging
threats?

* Critical software needs strong, formal guarantees of its correctness
and security



Formal Verification to the Rescue

* Formal verification can provide mathematical guarantees about
program behaviours

* Considers all execution paths

e Several successes over the past decade
e CompCert C compiler
* selL4 micro-kernel
e Astrée static analyzer
* Many efforts for cryptographic implementations



HACL*: A Verified Cryptographic Library

* Joint development between Inria and Microsoft Research

* Provides guarantees about memory safety, functional correctness,
resistance against side-channels #

* Developed using the F* proof assistant

e ~150k lines of F* code compiling to ~100k lines of C (and Assembly)
code

e 30+ algorithms (hashes, authenticated encryption, elliptic curves, ...)
* Integrated in Linux, Firefox, Tezos, Python, and many more



The F* Ecosystem

A

Proof Frameworks P4  Secure Applications

O Integrated in Mozilla, Python, Linux, ...

e Vale: Verification of assemblyy e HACL*: Verified Crypto library

e Low™*: Verification of C code " o EverParse: Verified Binary Parsers
O Integrated in Microsoft’s Hyper-V

e Steel: Verification of concurrent, low-~ e StarMalloc: Verified, Concurrent,

level systems Security-Oriented Memory Allocator

O Usable as drop-in replacement for
Firefox, redis, ...



Challenge: Usability

e Reliance on specific, uncommon languages (F*, Coq, ...)
* Requires deep expertise in formal methods to be usable

e Researcher-oriented toolchains

* How to democratize the use of formal methods?
* How to better integrate formal methods in development processes?



Challenge: Verification Tools Diversity

* Variety of tools for different uses

e Generic proof assistants (F*, Coq, Lean, ...)
e Cryptographic protocol verifiers (ProVerif, CryptoVerif, DY*, EasyCrypt, ...)
* Specification model checkers (TLA+, ...)

e Little interoperation between tools

* Specialized expertise, uncommon to master several tools

 How to support a multitude of tools for diverse usecases?
* How to empower teams with different proof expertises?



Challenge: Scalability

 Memory reasoning in C/C++ is tricky
* Aliasing, liveness, memory safety...

* Need complex models or logics
* Dynamic frames, separation logic

* Tedious and time-consuming, limits complexity of studied programs

 Distracts from “core” parts of verification

* How to simplify memory reasoning, and provide custom automation
for different classes of programs?



The Aeneas Methodology

System Architect

Cryptographer
Spec (Rust)
l Extract Vtract

Code (Rust)

Software Engineer

Spec (verif. tool) Spec + Code Model

Spec Properties

o Correctness Proof
(security, liveness, ...)




Rust Overview @

* At the forefront of “Safe Coding” development advocated by governments

* Adoption into Windows, Linux, Android, ...
* High-level language, with type polymorphism and “typeclasses” (traits)
* Ownership-based type system, ensuring memory safety
fn swap (x: &mut u8, y: &mut u8)
* Explicit data mutability, allows aliasing for immutable borrows
* Also provides low-level (C-like) idioms through unsafe escape hatch



Rust Issues

* Aborted executions at run-time (panic)
* E.g., out-of-bounds memory accesses. Risks of DoS

* Memory vulnerabilities in unsafe code
e Similar to C/C++
e Unsafe code needs to interoperate with safe code

* Design flaws, incorrect implementations, ...

Still need formal verification!



Translating Rust to Pure Code

* Core idea: Leverage invariants provided by the Rust type system to
simplify verification

* We translate Rust programs to semantically equivalent functional
models

* We can reason about these models in different proof assistants



Translating safe Rust to Pure Code

Rust: i Translation:

|
fn incr(x : &mut 132) { “ let incr (x : 132)

*X = X+ 1; i
} :
I
I : _
fn main() { " let Tain (z é .
let mut x = 0, I et x = 0 in
incr(&mut x); : 1et X - incr
incr(&mut x); ! let X - incr
incr(&mut x); I e xt- lnfi
assert!(x == 3); " assert (x ==
} I
I
I

X 1in
X 1in
X 1n

: 132 = x + 1

18



Translating safe Rust to Pure Code: Advantages

C: Verification:

I
I
void main() { I :
?
int x, y = 0; I Do x and y alias?

incr(sx); EEEE—— ' V6% X = 1Y = L elsex =1,y =0
J
incr(8y);  pEE—p—) Do x andy alias?

} I Ifyes,x=2,y=2,elsex=1,y=1
|
|
|
Rust: :
fn main() { | let main () =
let mut x, y = 0; l let x, y = 0 in
incr(&mut x); ﬂ let x = incr x 1in
incr(&mut y); I let y = incr y
} I

x and y are different variables, no

memory reasoning required
19



Translating safe Rust to Pure Code

Rust:

fn choose< “a>(
b : bool, x : &'a mut i32, y :
-> &'a mut 132
{
if b { return x; }
else { return y; }

let mut x = 0;
let mut y = 1;
let z = choose(true, &mut x, &mut y);

*z = 2; // Update x

// Observe the c@anges . ‘3 ends here

assert!(x == 2);
assert!(y == 1);

&'a mut i32)

Translation:

let choose (b : bool) (x :
if b then x else y

let x = 0 in
let y =1 in
let z = choose true x y in
let z = 2 in
.h?

i32) (y :

i32)

: 132 =



Translating safe Rust to Pure Code

Rust: Translation:

fn choose< “a>(
b : bool, x : &'a mut 132, y : &'a mut i32)
-> &'a mut 132

let choose (b : bool) (x : i32) (y : i32) : i32 =
if b then x else y

{
if b { return x; }
else { return y; }
}
let mut x = 0; let x = 0 in
let mut y = 1; lety =1 in
let z = choose(true, &mut x, &mut y); let z = choose true x y in
*z = 2; // Update x let z = 2 in

// Observe the changes
assert!(x == 2);
assert!(y == 1);

let (x, y) = if true then (z, y) else (x, z) in



Translating safe Rust to Pure Code

Rust: I Translation:

fn choose< “a>( : let choose fwd (b : bool) (x : i32) (y : i32) : i32 =
b : bool, x : &'a mut 132, y : &'a mut i32) if b then x else y
-> &'a mut 132

{ Types derived from let choose back (b : bool) (x : i32) (y : i32) (z : i32) :

// Observe the changes
assert!(x == 2);
assert!(y == 1);

let (x, y) = choose_back true x y z in

if b { return x; } . I i32 * 132 =
else { return y; } Rust signature only | if b then (z, y) else (x, z)
} |
|
let mut x = 0; : let x = 0 in
let mut y = 1; lety =1 in
let z = choose(true, &mut x, &mut y); : let z = choose fwd true x y in
*z = 2; // Update x : let z = 2 in
|
|
|
|
|

Modular translation with forward and backward functions



Translating Recursion

Rust: Translation:

pub enum List<T> {
Cons(T, Box<List<T>>),
Nil,

}

fn nth<'a, T>(l: &'a mut List<T>, i: u32)
-> &'amut T {

let rec nth_ fwd (t : Type) (1 : list t t) (i : u32) : result t =
begin match 1 with
| ListCons x t1 ->
ifi=20
then Return x
else begin i@ <-- u32_sub i 1; nth_fwd t tl 10 end
| ListNil -> Fail Failure

match 1 { end
List::Cons(x, tl) => {
if 1 ==0 { let rec nth_back (t : Type) (1 : list t t) (i : u32) (ret : t)
return Xx; result (list t t) =
} begin match 1 with
else { | ListCons x t1 ->
return nth(tl, i - 1); if 1 =20
} then Return (ListCons ret tl)
} else begin
List::Nil => { panic!() } i@ <-- u32_sub i 1;
} t10 <-- nth _back t tl i@ ret;

Return (ListCons x tl@) end
| ListNil -> Fail Failure
end

Forward and backward functions behave like lenses



Translating Loops

Rust:

pub enum List<T> {

}

pub fn nth<T>(mut 1s: &mut List<T>, mut i: u32)

Cons(T, Box<List<T>>),
Nil,

-> &mut T {
loop {
match 1ls {
List::Cons(x, tl) => {
if i == 0 { return x; }
else {
1s = t1;
i-=1;
continue;
¥
}
List::Nil => { panic!() }
} } Translated functions are similar

to the recursive case

Translation:

let rec nth_loop fwd
(t : Type) (1ls : list t t) (i : u32) : result t =
begin match 1ls with
| ListCons x t1 ->
if 1 = @ then Return x
else begin i@ <-- u32_sub i 1; nth_loop fwd t tl1 i@ end
| ListNil -> Fail Failure
end

let nth_fwd t 1s i = nth_loop fwd t 1ls i

let rec nth_loop back
(t : Type) (1ls : list t t) (i : u32) (ret : t)
result (list t t) =
begin match 1ls with
| ListCons x t1 ->
if 1 = @ then Return (ListCons ret tl)
else begin
i@ <-- u32 sub i 1;
t10 <-- nth_loop back t tl i@ ret;
Return (ListCons x tl@) end
| ListNil -> Fail Failure
end

let nth back t 1s i ret = nth _loop back t 1s i ret



Translation: Key Ingredients

* Translation based on a symbolic execution computing the borrow
graph
 Reimplements a borrow checker for Rust
* Formalized, captures the essence of borrow checking
* Allows to formally study extensions of the Rust type system
* Mechanization in Coq ongoing



Reusing Proof Assistant Ecosystems

* Functional models can be extracted to many proof assistants

* Allows reusing existing libraries and verified developments
* Mathlib in Lean
 Verified compilation and semantics in Coq
 SMT automation and side-channel reasoning in F*

* Possible to prove different properties on the same program in
different tools



Rust Static Analysis

* Reasoning in proof assistants is time-consuming
 Some properties do not require a high expressiveness of the tools
* Can be checked through static analyses

* Interacting with the Rust compiler is tricky
* Compilation-oriented representations
* Internal details and specific APIs
* Some information needs to be reconstructed



Charon: a Rust Analysis Framework

* Charon offers analysis-oriented representations for Rust programs
* Integrates with the Cargo build system, abstracts compiler internals
e Reconstructs analysis-relevant information (trait instantiations, ...)
e Simplifies representations (constants, pattern-matching, ...)

e Reconstructs control-flow

https://github.com/AeneasVerif/charon



Charon Applications

e Common interface for the Rust compiler, entrypoint of most of our
tools

* Prototype of side-channel analysis on top of Charon
e Can detect timing and cache-based side channels in cryptographic code
* Rediscovers the KyberSlash vulnerability in PQC implementations

e Other uses in the broader Rust verification community



Interoperating with Legacy Systems

* More and more projects move towards Rust, but many existing
projects still rely on C

* Eurydice can translate a subset of safe Rust to C code
* Type monomorphization
* Trait elimination
* Translation of high-level iterators to for/while loops

* Allows to develop (and verify) code in Rust, and deploy C code when
needed

https://github.com/AeneasVerif/eurydice



Porting Legacy Code to Rust

e Several projects (TRACTOR, C2Rust) aim to automatically translate
existing C/C++ code to Rust

e To support all of C, they mostly target unsafe Rust, losing safety
guarantees

* Translations do not necessarily preserve semantics

e Our approach:

* Target a small subset of C, but translate it to safe Rust
* Perform targeted rewritings in existing C code to match our supported subset



Handling Pointer Arithmetic

* In applicative C code, pointer arithmetic is mostly used for array
manipulations

let ab =abcd +0; // Slice of two elements of abcd
let dc = abcd + 2; // Slice of two elements of abcd

let ab = (& mut tmp1)[0..];
® let dc = (&mut tmp1l)[2..]; x
et sp =tmpl.split_at_mut(2usize);

@ et ab =sp.0;

et dc=sp.1;




Data Mutability

* By default, all data is implicitly mutable in C
void add(uint8* out, uint8* x, uint8* y) { out[0] = x[0] + y[O] }
add(out, x, x);

e Mutable data cannot alias in Rust

® fn add(out: &mut u8, x:&mut u8, y: &mut u8) { ... } x
add(out, x, x);

@ fn add(out: &u8, x:&u8, y: &u8) { out[0] = x[0] + y[O] } x



Inferring Mutability

* By default, we translate all pointers to immutable borrows
* We perform a backward analysis to precisely infer mutability
fn add(out: &u8, x:&u8, y: &u8) { out[0] = x[0] + y[O] }

!

fn add(out: &mut u8, x:&u8, y: &u8) { out[0] = x[0] + y[O] }

* Small changes and insertion of copies sometimes needed in source
code to match Rust semantics



Scylla: Preliminary Results

* Very experimental. Currently implemented as extractor for highly
structured, verified F* code

 WIP: libclang frontend to parse C files directly

e Csubset considered is sufficient for verified cryptography
 We can translate HACL* to 80,000 lines of safe Rust

* Can also translate parts of SymCrypt, bzip2 directly from C

* Not applicable to generic C code, but can help with legacy applicative
C code

https://github.com/AeneasVerif/scylla



Conclusion

* While being safer than C/C++, Rust opens new challenges and
avenues for formal verification

* Aeneas proposes to verify safe Rust programs through a translation to
a functional model:
* Eliminates memory reasoning
* Allows the use of different proof assistants (and leverage different expertises)

* An ecosystem of tools around Aeneas helps handling legacy systems,
and developing new analyses

https://aeneas-verif.zulipchat.com/  https://github.com/AeneasVerif

aymeric.fromherz@inria.fr

36




	Slide 1: The Aeneas Ecosystem: Formal Verification of Rust Programs
	Slide 2: An Iterative Development Process
	Slide 3: What About Critical Software?
	Slide 4: What About Critical Software?
	Slide 5: What Can We Do Better?
	Slide 6: What Can We Do Better?
	Slide 7: What Can We Do Better?
	Slide 8: Formal Verification to the Rescue
	Slide 9: HACL*: A Verified Cryptographic Library
	Slide 10: The F* Ecosystem
	Slide 11: Challenge: Usability
	Slide 12: Challenge: Verification Tools Diversity
	Slide 13: Challenge: Scalability
	Slide 14: The Aeneas Methodology
	Slide 15: Rust Overview
	Slide 16: Rust Issues
	Slide 17: Translating Rust to Pure Code
	Slide 18: Translating safe Rust to Pure Code
	Slide 19: Translating safe Rust to Pure Code: Advantages
	Slide 20: Translating safe Rust to Pure Code
	Slide 21: Translating safe Rust to Pure Code
	Slide 22: Translating safe Rust to Pure Code
	Slide 23: Translating Recursion
	Slide 24: Translating Loops
	Slide 25: Translation: Key Ingredients
	Slide 26: Reusing Proof Assistant Ecosystems
	Slide 27: Rust Static Analysis
	Slide 28: Charon: a Rust Analysis Framework
	Slide 29: Charon Applications
	Slide 30: Interoperating with Legacy Systems
	Slide 31: Porting Legacy Code to Rust
	Slide 32: Handling Pointer Arithmetic
	Slide 33: Data Mutability
	Slide 34: Inferring Mutability
	Slide 35: Scylla: Preliminary Results
	Slide 36: Conclusion

